3.7.13 \(\int \frac {1}{(d+e x)^{3/2} \sqrt {f+g x} (a+c x^2)} \, dx\) [613]

Optimal. Leaf size=354 \[ -\frac {e \sqrt {f+g x}}{\sqrt {-a} \left (\sqrt {c} d-\sqrt {-a} e\right ) (e f-d g) \sqrt {d+e x}}+\frac {e \sqrt {f+g x}}{\sqrt {-a} \left (\sqrt {c} d+\sqrt {-a} e\right ) (e f-d g) \sqrt {d+e x}}+\frac {\sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {\sqrt {c} f-\sqrt {-a} g} \sqrt {d+e x}}{\sqrt {\sqrt {c} d-\sqrt {-a} e} \sqrt {f+g x}}\right )}{\sqrt {-a} \left (\sqrt {c} d-\sqrt {-a} e\right )^{3/2} \sqrt {\sqrt {c} f-\sqrt {-a} g}}-\frac {\sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {\sqrt {c} f+\sqrt {-a} g} \sqrt {d+e x}}{\sqrt {\sqrt {c} d+\sqrt {-a} e} \sqrt {f+g x}}\right )}{\sqrt {-a} \left (\sqrt {c} d+\sqrt {-a} e\right )^{3/2} \sqrt {\sqrt {c} f+\sqrt {-a} g}} \]

[Out]

-e*(g*x+f)^(1/2)/(-d*g+e*f)/(-a)^(1/2)/(-e*(-a)^(1/2)+d*c^(1/2))/(e*x+d)^(1/2)+e*(g*x+f)^(1/2)/(-d*g+e*f)/(-a)
^(1/2)/(e*(-a)^(1/2)+d*c^(1/2))/(e*x+d)^(1/2)+arctanh((e*x+d)^(1/2)*(-g*(-a)^(1/2)+f*c^(1/2))^(1/2)/(g*x+f)^(1
/2)/(-e*(-a)^(1/2)+d*c^(1/2))^(1/2))*c^(1/2)/(-a)^(1/2)/(-e*(-a)^(1/2)+d*c^(1/2))^(3/2)/(-g*(-a)^(1/2)+f*c^(1/
2))^(1/2)-arctanh((e*x+d)^(1/2)*(g*(-a)^(1/2)+f*c^(1/2))^(1/2)/(g*x+f)^(1/2)/(e*(-a)^(1/2)+d*c^(1/2))^(1/2))*c
^(1/2)/(-a)^(1/2)/(e*(-a)^(1/2)+d*c^(1/2))^(3/2)/(g*(-a)^(1/2)+f*c^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.43, antiderivative size = 354, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {926, 98, 95, 214} \begin {gather*} -\frac {e \sqrt {f+g x}}{\sqrt {-a} \sqrt {d+e x} \left (\sqrt {c} d-\sqrt {-a} e\right ) (e f-d g)}+\frac {e \sqrt {f+g x}}{\sqrt {-a} \sqrt {d+e x} \left (\sqrt {-a} e+\sqrt {c} d\right ) (e f-d g)}+\frac {\sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {c} f-\sqrt {-a} g}}{\sqrt {f+g x} \sqrt {\sqrt {c} d-\sqrt {-a} e}}\right )}{\sqrt {-a} \left (\sqrt {c} d-\sqrt {-a} e\right )^{3/2} \sqrt {\sqrt {c} f-\sqrt {-a} g}}-\frac {\sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {-a} g+\sqrt {c} f}}{\sqrt {f+g x} \sqrt {\sqrt {-a} e+\sqrt {c} d}}\right )}{\sqrt {-a} \left (\sqrt {-a} e+\sqrt {c} d\right )^{3/2} \sqrt {\sqrt {-a} g+\sqrt {c} f}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)^(3/2)*Sqrt[f + g*x]*(a + c*x^2)),x]

[Out]

-((e*Sqrt[f + g*x])/(Sqrt[-a]*(Sqrt[c]*d - Sqrt[-a]*e)*(e*f - d*g)*Sqrt[d + e*x])) + (e*Sqrt[f + g*x])/(Sqrt[-
a]*(Sqrt[c]*d + Sqrt[-a]*e)*(e*f - d*g)*Sqrt[d + e*x]) + (Sqrt[c]*ArcTanh[(Sqrt[Sqrt[c]*f - Sqrt[-a]*g]*Sqrt[d
 + e*x])/(Sqrt[Sqrt[c]*d - Sqrt[-a]*e]*Sqrt[f + g*x])])/(Sqrt[-a]*(Sqrt[c]*d - Sqrt[-a]*e)^(3/2)*Sqrt[Sqrt[c]*
f - Sqrt[-a]*g]) - (Sqrt[c]*ArcTanh[(Sqrt[Sqrt[c]*f + Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[Sqrt[c]*d + Sqrt[-a]*e]
*Sqrt[f + g*x])])/(Sqrt[-a]*(Sqrt[c]*d + Sqrt[-a]*e)^(3/2)*Sqrt[Sqrt[c]*f + Sqrt[-a]*g])

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a +
b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Dist[(a*d*f*(m + 1)
 + b*c*f*(n + 1) + b*d*e*(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*
x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[Simplify[m + n + p + 3], 0] && (LtQ[m, -1] || Sum
SimplerQ[m, 1])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 926

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegr
and[(d + e*x)^m*(f + g*x)^n, 1/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g, m, n}, x] && NeQ[c*d^2 + a*e^2,
 0] &&  !IntegerQ[m] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int \frac {1}{(d+e x)^{3/2} \sqrt {f+g x} \left (a+c x^2\right )} \, dx &=\int \left (\frac {\sqrt {-a}}{2 a \left (\sqrt {-a}-\sqrt {c} x\right ) (d+e x)^{3/2} \sqrt {f+g x}}+\frac {\sqrt {-a}}{2 a \left (\sqrt {-a}+\sqrt {c} x\right ) (d+e x)^{3/2} \sqrt {f+g x}}\right ) \, dx\\ &=-\frac {\int \frac {1}{\left (\sqrt {-a}-\sqrt {c} x\right ) (d+e x)^{3/2} \sqrt {f+g x}} \, dx}{2 \sqrt {-a}}-\frac {\int \frac {1}{\left (\sqrt {-a}+\sqrt {c} x\right ) (d+e x)^{3/2} \sqrt {f+g x}} \, dx}{2 \sqrt {-a}}\\ &=-\frac {e \sqrt {f+g x}}{\sqrt {-a} \left (\sqrt {c} d-\sqrt {-a} e\right ) (e f-d g) \sqrt {d+e x}}+\frac {e \sqrt {f+g x}}{\sqrt {-a} \left (\sqrt {c} d+\sqrt {-a} e\right ) (e f-d g) \sqrt {d+e x}}-\frac {\sqrt {c} \int \frac {1}{\left (\sqrt {-a}-\sqrt {c} x\right ) \sqrt {d+e x} \sqrt {f+g x}} \, dx}{2 \left (\sqrt {-a} \sqrt {c} d-a e\right )}-\frac {\sqrt {c} \int \frac {1}{\left (\sqrt {-a}+\sqrt {c} x\right ) \sqrt {d+e x} \sqrt {f+g x}} \, dx}{2 \left (\sqrt {-a} \sqrt {c} d+a e\right )}\\ &=-\frac {e \sqrt {f+g x}}{\sqrt {-a} \left (\sqrt {c} d-\sqrt {-a} e\right ) (e f-d g) \sqrt {d+e x}}+\frac {e \sqrt {f+g x}}{\sqrt {-a} \left (\sqrt {c} d+\sqrt {-a} e\right ) (e f-d g) \sqrt {d+e x}}-\frac {\sqrt {c} \text {Subst}\left (\int \frac {1}{\sqrt {c} d+\sqrt {-a} e-\left (\sqrt {c} f+\sqrt {-a} g\right ) x^2} \, dx,x,\frac {\sqrt {d+e x}}{\sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {c} d-a e}-\frac {\sqrt {c} \text {Subst}\left (\int \frac {1}{-\sqrt {c} d+\sqrt {-a} e-\left (-\sqrt {c} f+\sqrt {-a} g\right ) x^2} \, dx,x,\frac {\sqrt {d+e x}}{\sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {c} d+a e}\\ &=-\frac {e \sqrt {f+g x}}{\sqrt {-a} \left (\sqrt {c} d-\sqrt {-a} e\right ) (e f-d g) \sqrt {d+e x}}+\frac {e \sqrt {f+g x}}{\sqrt {-a} \left (\sqrt {c} d+\sqrt {-a} e\right ) (e f-d g) \sqrt {d+e x}}+\frac {\sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {\sqrt {c} f-\sqrt {-a} g} \sqrt {d+e x}}{\sqrt {\sqrt {c} d-\sqrt {-a} e} \sqrt {f+g x}}\right )}{\sqrt {-a} \left (\sqrt {c} d-\sqrt {-a} e\right )^{3/2} \sqrt {\sqrt {c} f-\sqrt {-a} g}}-\frac {\sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {\sqrt {c} f+\sqrt {-a} g} \sqrt {d+e x}}{\sqrt {\sqrt {c} d+\sqrt {-a} e} \sqrt {f+g x}}\right )}{\sqrt {-a} \left (\sqrt {c} d+\sqrt {-a} e\right )^{3/2} \sqrt {\sqrt {c} f+\sqrt {-a} g}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.96, size = 383, normalized size = 1.08 \begin {gather*} \frac {2 e^2 \sqrt {f+g x}}{\left (c d^2+a e^2\right ) (-e f+d g) \sqrt {d+e x}}+\frac {i \sqrt {c} \left (\sqrt {c} d+i \sqrt {a} e\right )^2 \tan ^{-1}\left (\frac {\sqrt {c d^2+a e^2} \sqrt {f+g x}}{\sqrt {-\left (\left (\sqrt {c} d+i \sqrt {a} e\right ) \left (\sqrt {c} f-i \sqrt {a} g\right )\right )} \sqrt {d+e x}}\right )}{\sqrt {a} \left (c d^2+a e^2\right )^{3/2} \sqrt {-\left (\left (\sqrt {c} d+i \sqrt {a} e\right ) \left (\sqrt {c} f-i \sqrt {a} g\right )\right )}}-\frac {i \sqrt {c} \left (\sqrt {c} d-i \sqrt {a} e\right )^2 \tan ^{-1}\left (\frac {\sqrt {c d^2+a e^2} \sqrt {f+g x}}{\sqrt {-\left (\left (\sqrt {c} d-i \sqrt {a} e\right ) \left (\sqrt {c} f+i \sqrt {a} g\right )\right )} \sqrt {d+e x}}\right )}{\sqrt {a} \left (c d^2+a e^2\right )^{3/2} \sqrt {-\left (\left (\sqrt {c} d-i \sqrt {a} e\right ) \left (\sqrt {c} f+i \sqrt {a} g\right )\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)^(3/2)*Sqrt[f + g*x]*(a + c*x^2)),x]

[Out]

(2*e^2*Sqrt[f + g*x])/((c*d^2 + a*e^2)*(-(e*f) + d*g)*Sqrt[d + e*x]) + (I*Sqrt[c]*(Sqrt[c]*d + I*Sqrt[a]*e)^2*
ArcTan[(Sqrt[c*d^2 + a*e^2]*Sqrt[f + g*x])/(Sqrt[-((Sqrt[c]*d + I*Sqrt[a]*e)*(Sqrt[c]*f - I*Sqrt[a]*g))]*Sqrt[
d + e*x])])/(Sqrt[a]*(c*d^2 + a*e^2)^(3/2)*Sqrt[-((Sqrt[c]*d + I*Sqrt[a]*e)*(Sqrt[c]*f - I*Sqrt[a]*g))]) - (I*
Sqrt[c]*(Sqrt[c]*d - I*Sqrt[a]*e)^2*ArcTan[(Sqrt[c*d^2 + a*e^2]*Sqrt[f + g*x])/(Sqrt[-((Sqrt[c]*d - I*Sqrt[a]*
e)*(Sqrt[c]*f + I*Sqrt[a]*g))]*Sqrt[d + e*x])])/(Sqrt[a]*(c*d^2 + a*e^2)^(3/2)*Sqrt[-((Sqrt[c]*d - I*Sqrt[a]*e
)*(Sqrt[c]*f + I*Sqrt[a]*g))])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(10976\) vs. \(2(270)=540\).
time = 0.09, size = 10977, normalized size = 31.01

method result size
default \(\text {Expression too large to display}\) \(10977\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(3/2)/(c*x^2+a)/(g*x+f)^(1/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+a)/(g*x+f)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((c*x^2 + a)*sqrt(g*x + f)*(x*e + d)^(3/2)), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 11846 vs. \(2 (270) = 540\).
time = 50.32, size = 11846, normalized size = 33.46 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+a)/(g*x+f)^(1/2),x, algorithm="fricas")

[Out]

-1/4*(8*sqrt(e*x + d)*sqrt(g*x + f)*e^2 + ((c*d^3*e + a*d*e^3)*f - (c*d^4 + a*d^2*e^2)*g + ((c*d^2*e^2 + a*e^4
)*f - (c*d^3*e + a*d*e^3)*g)*x)*sqrt(-((c^3*d^3 - 3*a*c^2*d*e^2)*f - (3*a*c^2*d^2*e - a^2*c*e^3)*g + ((a*c^4*d
^6 + 3*a^2*c^3*d^4*e^2 + 3*a^3*c^2*d^2*e^4 + a^4*c*e^6)*f^2 + (a^2*c^3*d^6 + 3*a^3*c^2*d^4*e^2 + 3*a^4*c*d^2*e
^4 + a^5*e^6)*g^2)*sqrt(-((9*c^5*d^4*e^2 - 6*a*c^4*d^2*e^4 + a^2*c^3*e^6)*f^2 + 2*(3*c^5*d^5*e - 10*a*c^4*d^3*
e^3 + 3*a^2*c^3*d*e^5)*f*g + (c^5*d^6 - 6*a*c^4*d^4*e^2 + 9*a^2*c^3*d^2*e^4)*g^2)/((a*c^8*d^12 + 6*a^2*c^7*d^1
0*e^2 + 15*a^3*c^6*d^8*e^4 + 20*a^4*c^5*d^6*e^6 + 15*a^5*c^4*d^4*e^8 + 6*a^6*c^3*d^2*e^10 + a^7*c^2*e^12)*f^4
+ 2*(a^2*c^7*d^12 + 6*a^3*c^6*d^10*e^2 + 15*a^4*c^5*d^8*e^4 + 20*a^5*c^4*d^6*e^6 + 15*a^6*c^3*d^4*e^8 + 6*a^7*
c^2*d^2*e^10 + a^8*c*e^12)*f^2*g^2 + (a^3*c^6*d^12 + 6*a^4*c^5*d^10*e^2 + 15*a^5*c^4*d^8*e^4 + 20*a^6*c^3*d^6*
e^6 + 15*a^7*c^2*d^4*e^8 + 6*a^8*c*d^2*e^10 + a^9*e^12)*g^4)))/((a*c^4*d^6 + 3*a^2*c^3*d^4*e^2 + 3*a^3*c^2*d^2
*e^4 + a^4*c*e^6)*f^2 + (a^2*c^3*d^6 + 3*a^3*c^2*d^4*e^2 + 3*a^4*c*d^2*e^4 + a^5*e^6)*g^2))*log(-((3*c^3*d^2*e
^2 - a*c^2*e^4)*f^2 + 4*(c^3*d^3*e - a*c^2*d*e^3)*f*g + (c^3*d^4 - 3*a*c^2*d^2*e^2)*g^2 + 2*((3*c^4*d^4*e - 4*
a*c^3*d^2*e^3 + a^2*c^2*e^5)*f^2 + (c^4*d^5 - 10*a*c^3*d^3*e^2 + 5*a^2*c^2*d*e^4)*f*g - 2*(a*c^3*d^4*e - 3*a^2
*c^2*d^2*e^3)*g^2 - (2*(a*c^5*d^7*e + 3*a^2*c^4*d^5*e^3 + 3*a^3*c^3*d^3*e^5 + a^4*c^2*d*e^7)*f^3 + (a*c^5*d^8
+ 2*a^2*c^4*d^6*e^2 - 2*a^4*c^2*d^2*e^6 - a^5*c*e^8)*f^2*g + 2*(a^2*c^4*d^7*e + 3*a^3*c^3*d^5*e^3 + 3*a^4*c^2*
d^3*e^5 + a^5*c*d*e^7)*f*g^2 + (a^2*c^4*d^8 + 2*a^3*c^3*d^6*e^2 - 2*a^5*c*d^2*e^6 - a^6*e^8)*g^3)*sqrt(-((9*c^
5*d^4*e^2 - 6*a*c^4*d^2*e^4 + a^2*c^3*e^6)*f^2 + 2*(3*c^5*d^5*e - 10*a*c^4*d^3*e^3 + 3*a^2*c^3*d*e^5)*f*g + (c
^5*d^6 - 6*a*c^4*d^4*e^2 + 9*a^2*c^3*d^2*e^4)*g^2)/((a*c^8*d^12 + 6*a^2*c^7*d^10*e^2 + 15*a^3*c^6*d^8*e^4 + 20
*a^4*c^5*d^6*e^6 + 15*a^5*c^4*d^4*e^8 + 6*a^6*c^3*d^2*e^10 + a^7*c^2*e^12)*f^4 + 2*(a^2*c^7*d^12 + 6*a^3*c^6*d
^10*e^2 + 15*a^4*c^5*d^8*e^4 + 20*a^5*c^4*d^6*e^6 + 15*a^6*c^3*d^4*e^8 + 6*a^7*c^2*d^2*e^10 + a^8*c*e^12)*f^2*
g^2 + (a^3*c^6*d^12 + 6*a^4*c^5*d^10*e^2 + 15*a^5*c^4*d^8*e^4 + 20*a^6*c^3*d^6*e^6 + 15*a^7*c^2*d^4*e^8 + 6*a^
8*c*d^2*e^10 + a^9*e^12)*g^4)))*sqrt(e*x + d)*sqrt(g*x + f)*sqrt(-((c^3*d^3 - 3*a*c^2*d*e^2)*f - (3*a*c^2*d^2*
e - a^2*c*e^3)*g + ((a*c^4*d^6 + 3*a^2*c^3*d^4*e^2 + 3*a^3*c^2*d^2*e^4 + a^4*c*e^6)*f^2 + (a^2*c^3*d^6 + 3*a^3
*c^2*d^4*e^2 + 3*a^4*c*d^2*e^4 + a^5*e^6)*g^2)*sqrt(-((9*c^5*d^4*e^2 - 6*a*c^4*d^2*e^4 + a^2*c^3*e^6)*f^2 + 2*
(3*c^5*d^5*e - 10*a*c^4*d^3*e^3 + 3*a^2*c^3*d*e^5)*f*g + (c^5*d^6 - 6*a*c^4*d^4*e^2 + 9*a^2*c^3*d^2*e^4)*g^2)/
((a*c^8*d^12 + 6*a^2*c^7*d^10*e^2 + 15*a^3*c^6*d^8*e^4 + 20*a^4*c^5*d^6*e^6 + 15*a^5*c^4*d^4*e^8 + 6*a^6*c^3*d
^2*e^10 + a^7*c^2*e^12)*f^4 + 2*(a^2*c^7*d^12 + 6*a^3*c^6*d^10*e^2 + 15*a^4*c^5*d^8*e^4 + 20*a^5*c^4*d^6*e^6 +
 15*a^6*c^3*d^4*e^8 + 6*a^7*c^2*d^2*e^10 + a^8*c*e^12)*f^2*g^2 + (a^3*c^6*d^12 + 6*a^4*c^5*d^10*e^2 + 15*a^5*c
^4*d^8*e^4 + 20*a^6*c^3*d^6*e^6 + 15*a^7*c^2*d^4*e^8 + 6*a^8*c*d^2*e^10 + a^9*e^12)*g^4)))/((a*c^4*d^6 + 3*a^2
*c^3*d^4*e^2 + 3*a^3*c^2*d^2*e^4 + a^4*c*e^6)*f^2 + (a^2*c^3*d^6 + 3*a^3*c^2*d^4*e^2 + 3*a^4*c*d^2*e^4 + a^5*e
^6)*g^2)) + 2*((3*c^3*d^2*e^2 - a*c^2*e^4)*f*g + (c^3*d^3*e - 3*a*c^2*d*e^3)*g^2)*x + (2*(c^5*d^7 + 3*a*c^4*d^
5*e^2 + 3*a^2*c^3*d^3*e^4 + a^3*c^2*d*e^6)*f^3 + 2*(a*c^4*d^7 + 3*a^2*c^3*d^5*e^2 + 3*a^3*c^2*d^3*e^4 + a^4*c*
d*e^6)*f*g^2 + ((c^5*d^6*e + 3*a*c^4*d^4*e^3 + 3*a^2*c^3*d^2*e^5 + a^3*c^2*e^7)*f^3 + (c^5*d^7 + 3*a*c^4*d^5*e
^2 + 3*a^2*c^3*d^3*e^4 + a^3*c^2*d*e^6)*f^2*g + (a*c^4*d^6*e + 3*a^2*c^3*d^4*e^3 + 3*a^3*c^2*d^2*e^5 + a^4*c*e
^7)*f*g^2 + (a*c^4*d^7 + 3*a^2*c^3*d^5*e^2 + 3*a^3*c^2*d^3*e^4 + a^4*c*d*e^6)*g^3)*x)*sqrt(-((9*c^5*d^4*e^2 -
6*a*c^4*d^2*e^4 + a^2*c^3*e^6)*f^2 + 2*(3*c^5*d^5*e - 10*a*c^4*d^3*e^3 + 3*a^2*c^3*d*e^5)*f*g + (c^5*d^6 - 6*a
*c^4*d^4*e^2 + 9*a^2*c^3*d^2*e^4)*g^2)/((a*c^8*d^12 + 6*a^2*c^7*d^10*e^2 + 15*a^3*c^6*d^8*e^4 + 20*a^4*c^5*d^6
*e^6 + 15*a^5*c^4*d^4*e^8 + 6*a^6*c^3*d^2*e^10 + a^7*c^2*e^12)*f^4 + 2*(a^2*c^7*d^12 + 6*a^3*c^6*d^10*e^2 + 15
*a^4*c^5*d^8*e^4 + 20*a^5*c^4*d^6*e^6 + 15*a^6*c^3*d^4*e^8 + 6*a^7*c^2*d^2*e^10 + a^8*c*e^12)*f^2*g^2 + (a^3*c
^6*d^12 + 6*a^4*c^5*d^10*e^2 + 15*a^5*c^4*d^8*e^4 + 20*a^6*c^3*d^6*e^6 + 15*a^7*c^2*d^4*e^8 + 6*a^8*c*d^2*e^10
 + a^9*e^12)*g^4)))/x) - ((c*d^3*e + a*d*e^3)*f - (c*d^4 + a*d^2*e^2)*g + ((c*d^2*e^2 + a*e^4)*f - (c*d^3*e +
a*d*e^3)*g)*x)*sqrt(-((c^3*d^3 - 3*a*c^2*d*e^2)*f - (3*a*c^2*d^2*e - a^2*c*e^3)*g + ((a*c^4*d^6 + 3*a^2*c^3*d^
4*e^2 + 3*a^3*c^2*d^2*e^4 + a^4*c*e^6)*f^2 + (a^2*c^3*d^6 + 3*a^3*c^2*d^4*e^2 + 3*a^4*c*d^2*e^4 + a^5*e^6)*g^2
)*sqrt(-((9*c^5*d^4*e^2 - 6*a*c^4*d^2*e^4 + a^2*c^3*e^6)*f^2 + 2*(3*c^5*d^5*e - 10*a*c^4*d^3*e^3 + 3*a^2*c^3*d
*e^5)*f*g + (c^5*d^6 - 6*a*c^4*d^4*e^2 + 9*a^2*c^3*d^2*e^4)*g^2)/((a*c^8*d^12 + 6*a^2*c^7*d^10*e^2 + 15*a^3*c^
6*d^8*e^4 + 20*a^4*c^5*d^6*e^6 + 15*a^5*c^4*d^4*e^8 + 6*a^6*c^3*d^2*e^10 + a^7*c^2*e^12)*f^4 + 2*(a^2*c^7*d^12
 + 6*a^3*c^6*d^10*e^2 + 15*a^4*c^5*d^8*e^4 + 20...

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (a + c x^{2}\right ) \left (d + e x\right )^{\frac {3}{2}} \sqrt {f + g x}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(3/2)/(c*x**2+a)/(g*x+f)**(1/2),x)

[Out]

Integral(1/((a + c*x**2)*(d + e*x)**(3/2)*sqrt(f + g*x)), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+a)/(g*x+f)^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{\sqrt {f+g\,x}\,\left (c\,x^2+a\right )\,{\left (d+e\,x\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((f + g*x)^(1/2)*(a + c*x^2)*(d + e*x)^(3/2)),x)

[Out]

int(1/((f + g*x)^(1/2)*(a + c*x^2)*(d + e*x)^(3/2)), x)

________________________________________________________________________________________